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Abstract. We present some static, cylindrical and plane symmetric solutions to the 
equations of the quadratic Poincare gauge field theory developed by Hehl and co-workers. 

1. Introduction 

This paper contains some preliminary results in a search for static, vacuum, cylindrical 
and plane symmetric solutions to the equations of the quadratic PoincarC gauge (QPG) 
field theory developed by Hehl and co-workers (see Hehl 1979, Baekler et a1 1980). 
In 5 2 a brief summary of the notation is given and the equations of the QPG theory 
are stated. For a concise description of the theory together with its physical motivation 
the reader is referred to Hehl et a1 (1980). A solution of the QPG field equations 
determines a Riemann-Cartan space-time which is specified by an orthonormal tetrad 
field (or, equivalently, a metric) and a metric-compatible non-symmetric connection. 
In the spherically symmetric solutions of Baekler et a1 (1980) and Baekler (1982) 
the metric has the property of satisfying Einstein’s equations with the cosmological 
constant: 

i a p  = A g a p  (1.1) 
where kaB is the Ricci tensor for the symmetric Riemannian connection defined by 
the metric and the constant A involves certain coupling constants that occur in the 
QPG equations. Guided by these results we restrict ourselves here to looking for 
solutions which have this property. Accordingly, in § 3, the complete solution of (1.1) 
for static, cylindrical and plane symmetric metrics is derived and, in § 4, a number of 
special solutions to the QPG equations are derived corresponding to the metrics found 
in § 3. 

2. The QPG vacuum equations 

The underlying space-time is taken to be a differentiable manifold with normal 
hyperbolic metric g and connection V. It is assumed that the connection is compatible 
with the metric in the sense that 

(2.1) X k ( Y ,  211 = g(VxY, Z)+g(Y,  V X Z )  
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for arbitrary vector fields X ,  Y and 2. 
Let e ,  (a  =0, 1 ,2 ,3 )  be an orthonormal tetrad field so that g(e , ,  e p ) = q a p  = 

diag(-1, 1 ,1 ,1) .  In terms of a local coordinate system { x i } ,  e ,  =eL(x)ai where ai = 
a/axi. The dual basis of one-forms will be denoted by 8" = e?(x) dxi, where e s e ;  = a;, 
and their exterior derivatives (the object of anholonomity in Hehl's terminology) may 
be written in the form 

and the square brackets denote antisymmetrisation. 
The connection one-forms w,' are defined by 

V ~ G  = wa5 W e p  

for an arbitrary vector field X ,  so that 

= rWapew 
where 

VeUe,  = rFapep.  

Since g(e, ,  e @ )  are constants, it follows from (2.1) and (2.6) that 

(2.4) 

and hence 

The torsion two-forms are given by 

0" =dea+WCla A 6 w = + F , / e f i  A B "  

where, by (2.2) and (2.5), 

F,"~ = ow,* + 2r[,,1a 

and hence, by (2.8), 

(2.9) 

(2.10) 

The curvature two-forms are defined by 

flpP = dWpP + wWa A wBLl = $FFYp "ew A ey ,  
so that 

(2.12) 

F~~~~ = a, rvpa - aVrwpa + rFUa rypu - rvua rWPu + rUpa allyu (2.13) 
where ap = e p  = ekai. Finally, for later use in the field equations, one defines the 
modified torsion components 

(2.14) 

(2.15) 

Tp = TBvy and rp = rvpy. (2.16) 
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The vacuum field equations of the quadratic PoincarC gauge field theory for a 
particular choice of Lagrangian are given by equations (2.5) and (2.6) of Baekler et 
a1 (1980). These equations are written in terms of mixed coordinate and tetrad indices. 
Writing them entirely in terms of tetrad components one obtains the following 
equations (Hehl, private communication): 

Cap =drTYaP +(r, -$T, )Tyap -I‘Va’TY+p -rVpLITYa+ +iTYWaTFvp + TYaLITrp, 
1 -$T,Tp + ( ~ 2 / ~ ) F a . , ~ p Y u r  -~qap(TYu*Tyv,  - TYT,  + (12 /K)F+yu~wYuT)  

= O  (2.17) 

where K and 1’ are coupling constants, and 

rYap 
2 a,FYwap - rya@FYY,p + rVpWFYYWa + r,FYwap + (T,,’ +$T,,Y)Fw”ap + ( K / 1  )TY[.pj 

= 0. (2.18) 

The procedure in looking for solutions of (2.17) and (2.18) is to regard them as 
equations for the ‘unknown’ functions e7 and Fapv. In analogy with the spherically 
symmetric solutions of Baekler et a1 (1980) and Baekler (1982) we restrict ourselves 
to solutions of (2.17) and (2.18) for which the metric components gii = qapeSeY are 
solutions of Einstein’s equations with the cosmological constant: 

(2.19) 

where gij is the Ricci tensor for the symmetric Riemannian connection defined by gij 
and A = *3~/41’ (see equation (7.5) of Baekler et a1 (1980) where, however, it is 
only the + sign that occurs). The first step is therefore to solve (2.19) for static, 
cylindrical and plane symmetric space-times. 

3. Einstein equations with the cosmological constant 

Consider a static space-time which, in addition to the timelike hypersurface- 
orthogonal Killing vector field, has two spacelike Killing fields. Furthermore we 
assume that the three Killing fields are mutually orthogonal and commute among 
themselves. One can then choose the coordinates so that 

ds2 = -exp(2u) dt2+exp(2v) dy2+exp(2w) dz2+dx2,  (3.1) 

where U, U and w are functions of x only. If the coordinate lines of y (say) are closed 
with 0 s y s 27r and -00 < z < 00, 0 < x < 00, the metric is cylindrically symmetric with 
y as the angular, x the cylindrical radial and z the longitudinal coordinate. If 
-00 < x, y,  z < 00, the symmetry may be called pseudo-planar (see Bronnikov and 
Kovalchuk 1979). From the point of view of the local field equations both cases may 
be treated simultaneously. For the vacuum field equations with zero cosmological 
constant one may transform to Weyl canonical coordinates with only two independent 
functions in the metric. However, this is not possible here. 

The field equations (2.19) for the metric (3.1) yield 
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U'' + U"+ u t 2  + v f 2  + u ' v '  = A 

U ' W ' +  w'u '+u'v '  = A 

(3.4) 

(3.5) 

where a prime denotes differentiation with respect to x. Let 5 = U + v + w, TJ = U -U, 
p = v - w and a = w -U. Then (3.2)-(3.5) give 

5"+('2 = 3A (3.6) 

TJ'  = a exp(-f) p' = b exp(-5) a ' = c exp( -5 )  (3.7) 

where a, b and c are constants of integration, with 

a + b + c = O .  (3.8) 

We distinguish the cases for which A >  0 and A <  0. 

3.1. Case 1: A > O  

The general solution of (3.6) is 

5 = Ink  exp(qx) + d exp(-qx 1) (3.9) 

where q = (3A)'l2; g and d are constants. The functions TJ, p and a are then obtained 
from (3.7) by a simple quadrature and hence U, v and w are determined. On substitut- 
ing (3.7) and (3.9) into (3.2H3.5) one obtains 

U + b + c = -8gdq *. (3.10) 

We therefore have two subcases: case l (a )  for which d = 0, g # 0 (or g = 0, d # 0) and 
consequently, by (3.10), a = b = c = 0, and case 1(b) for which both g and d are 
non-zero and, by (3. lo) ,  necessarily of opposite sign. 

By some manipulation and rescaling of the coordinates one finally obtains the 
following forms for the functions in the metric (3.1). 

Case l(a). (d = 0, g # 0): 

u = v = w = q x / 3 .  (3.11) 

If g = 0, d # 0, then qx/3 is replaced by -qx/3. 

Case l(b). (g # 0, d # 0): 
A 1/3 

B 1 /3  

C 1/3  

e' = (sinh(qx)f(x) ) 

e" = (sinh(qx)f(x) ) 

ew = (sinh(qx)f(x) ) 

where 

f(x) = (cosh(qx) - l)/(cosh(qx) + 1) 

and 

A + B + C = O  A 2 + B 2 + C 2 = ; .  

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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By (3.16) the constants A, B and C may be expressed in terms of a single parameter 
P as 

A = *3'/'/[2(1 + p  +p2)"*] B = P A  C = -(1 +p)A.  (3.17) 

3.2. Case 2: A ( 0  

The general solution of (3.6) is then 

6 = ln(g sin q(x + E ) )  (3.18) 

where q = (-3A)'", g and E are constants. Again with some manipulation one can 
express the metric in the form (3.1) with 

(3.19) 

(3.20) 

A 1 / 3  

B 1/3 

e' = (sin(qx)f(x) ) 

e" = (sin(qx)f(x) ) 

(3.21) 

(3.22) 

and A ,  B and C satisfy (3.16). 
Note that for cylindrical symmetry, where y is the angular coordinate, the topologi- 

cal implications of rescaling y should be considered in all of the above cases. 
Stationary, cylindrically symmetric solutions to Einstein's equations with the cos- 

mological constant have been treated by Krasinski (1975). It is easy to verify that 
case l ( a )  above is equivalent to the metric (9.3) of his paper, while a rather involved 
coordinate transformation shows cases l ( b )  and 2 to be equivalent to his Type B 
solutions. However, the functions occurring in the Type B metrics of Krasinski are 
considerably more complicated, containing, as they do, seven (constant) parameters 
instead of the two parameters q and p of .the present paper. Cases l ( b )  and 2 with 
t and x interchanged also correspond to the spatially homogeneous solution of 
Saunders (see Kramer et a1 1980). 

4. Solutions of the QPG field equations 

In this section we present some special solutions of the QPG field equations (2.17) 
and (2.18). The metric is taken to be of the form (3.1) and the obvious orthonormal 
tetrad field 

e? dx' = e u  dt e t  dx' = e v  dy e :  dx' = ew dz e :  dx' =dx (4.1) 
is chosen where (xo, x ', x2, x3) = ( t ,  y, z ,  x).  We look for solutions of the equations 
(2.17) and (2.18) for which the functions U, U and w have the forms given in each of 
the three cases described in 9: 3, and A = 3 ~ 1 4 1 ~  in case 1 and A = - 3 ~ 1 4 1 ~  in case 2. 
On making the substitutions (4.1) with the prescribed forms of U, U and w in each 
case, equations (2.17) and (2.18) become equations for the torsion components 
F a p y  = -Fpay. In order to have manageable equations restrictions will also be imposed 
on the Fasy which will be specified when we come to deal with each case in turn. 

When written out in full the expression for Zap and 7yap occurring in equations 
(2.17) and (2.18) are very long and unwieldy. All the calculations have been done 
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on a computer using a REDUCE program and a certain degree of trial and error was 
involved. As it would be extremely tedious to reproduce the details of the calculations 
we shall simply describe the procedure used and state the results. 

Solution for case l(u).  Let e? be given by (4.1) with U, U and w as in (3.11). The 
only non-zero components of napy (modulo the antisymmetry, RaBy = -Opay) are then 
n030= -0131 = - 0 2 3 2  = 413. Using this as a guide we restrict ourselves to seeking 
solutions of (2.17) and (2.18) for which 

(4.2) 

and q 2  = 9~141’. 

one independent equation for U(x):  
Substitution of (4.2) and (4.11, with U ,  t’ and w as in (3.11), into (2.18) yields just 

(4.3) U” + qU’ = 2U2(  U - q 1. 

3 v 2  + 2q(U +q)U‘ - U(3  U 3  - 4qU2 + 3q2U - 2q3) = 0 

9 ~ ’ ~ + 2 q ( 3 ~ - q ) u ’ -  U(9U3  - 12qU2+q2U+2q3)  = 0. 

On substituting into (2.17) one obtains two independent equations: 

(4.4) 

(4.5) 

and 

Eliminate U” from (4.4) and (4.5) to get 

lJ’= U ( U  -4)  
which has 

(4.6) 

U = qI(1 -D exp(qx)) (4.7) 
as its general solution, where D is an arbitrary constant. Finally one may verify that 
(remarkably!) (4.7) satisfies all of the equations (4.3)-(4.5). 

Thus (4.1) and (4.2), with K, U, w and U given by (3.11) and (4.7), is a solution of 
the QPG equations (2.17) and (2.18). 

Solution for case l (b ) .  Let e :  be as in (4.1) with e’, e” and ew given by (3.12)-(3.15). 
The only independent non-zero components of na6,. are again llo30, n13, and &32. 

For this case we have so far looked only for solutions in which one of the independent 
components F030, F 1 3 1  or F 2 3 2  is non-zero while all the other independent components 
vanish. 

First of all let 

I7030 = -F~oo = U(X) 
(4.8) 

and, as before, q 2  = 9 ~ 1 4 1 ~ .  It is found that the only independent non-zero components 
of T~~~ (equation (2.18)) are 7 O O 3 ,  7’13 and 7*23. The equation 7’03 = 0 yields 

(4.9) 

All other components of Fapy = 0 

sinh2(qx)U”+q sinh(qx1 cosh(qx)U‘-q2U = 0, 

the general solution of which is 

U = ( a  cosh(qx) + 6 !lsinh(qx) (4.10) 
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where a and b are constants of integration. The solution U(x) of (4.10) satisfies 
T113 = 0 and T~~~ = 0 if and only if a = 0 and either 

c = -1 b = 2913 A = l  2 

b = -2q/3 A = - 1  B = '  2 C=' 2. 

2 B = -1 

or 

Furthermore, with either of these two sets of values for the constants the equations 
= 0 (equation (2.17)) are satisfied automatically. 

Thus (4.1) and (4.8), with U, v and w given by (3.12)-(3.15), is a solution of the 
QPG equations (2.17) and (2.18) if and only if either 

U(x) = 2q/3 sinh(qx) A = l  B=-' 2, C=-' 2 (4.11) 
or 

U(x)  = -2q/3 sinh(qx) A = - l  B = '  2, C=' 2. (4.12) 

By a similar procedure the following solutions for the metric of case 1 ( b )  may also 

F131= -F311= 2q/3 sinh(qx) A = '  2, B = - 1 ,  C = i  (4.13) 

be found: 

or 
1 

F131= -F311= -2q/3 sinh(qx) A = -3, B = 1, C =-i, (4.14) 

all other FaBv being equal to zero, and 

(4.15) A = T ,  1 B = i ,  C = - l  
F 2 3 2  = -F322 = 2q/3 sinh(qx) 

or 

F 2 3 2  = - F 3 2 2  = -2q/3 sinh(qx) A = - $ ,  B = - $ ,  C = l ,  (4.16) 

all other Fapv being equal to zero. 

Solution for case 2. An attempt to find solutions in this case along the lines of the 
preceding example proves to be unsuccessful. Take e9 as in (4.1) with e", e' and e w  
given by (3.19)-(3.22) and the torsion as in (4.8). Proceeding exactly as before, it is 
found that (2.18) is satisfied if and only if either 

U(x) = 2q(2 cos qx +3) /3  sin qx A = l  B=-' 2, C=-' 2 (4.17) 

or 
1 U(x)=2q(2cosqx  -3)/3sinqx A = - l ,  B = $ ,  C=z. (4.18) 

However, on substituting these solutions into (2.17) one obtains 

z a p  = - (2q2/3)~ap  (4.19) 

so there is no vacuum solution of this form for case 2. Similarly, further solutions of 
equation (2.18) are given by 

1 
F131= -2q (2 cos qx - 3)/3 sin qx A = , ,  B = - 1 ,  C = $  (4.20) 

or 

F131= -2q (2 cos qx + 3)/3 sin qx A=-$ ,  B = l ,  C=-' 21 (4.21) 
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all other independent Fapy being equal to zero, and the obvious corresponding solution 
for the case in which all the Fapv vanish except for F232 = -F322. Substitution of these 
solutions into (2.17) again yields (4.19). 

The lack of success in finding a vacuum solution for this case, where A = - 3 ~ / 4 1 ~  
instead of + 3 ~ / 4 l ~  as in case 1, would seem to indicate that, in general, the QPG 
equations are sensitive to the sign of A in (2.19). 
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